作业帮 > 数学 > 作业

高数题求解:设f(x)有界,且f′(x)连续,对任意的x∈(-∞,+∞)有|f(x)+f′(x)| ≤1,证明:|f(x

来源:学生作业帮 编辑:搜搜做题作业网作业帮 分类:数学作业 时间:2024/07/12 17:50:29
高数题求解:设f(x)有界,且f′(x)连续,对任意的x∈(-∞,+∞)有|f(x)+f′(x)| ≤1,证明:|f(x)|≤1
高数题求解:设f(x)有界,且f′(x)连续,对任意的x∈(-∞,+∞)有|f(x)+f′(x)| ≤1,证明:|f(x
设F(x)=e^x[f(x)-1],则F′(x)=e^x[f(x)+f′(x)-1],
因为-1≤f(x)+f′(x)≤1,
所以F′(x)≤0,即F(x)单调不增,
因为F(x)单调有下界,
故存在l i m F(x)为F(x)的最大值,
x->-∞
因为f(x)有界,所以存在常数值m,M,使得m-∞
所以根据极限夹逼法可知,
l i m F(x)=0
x->-∞
则F(x)≤0,即e^x[f(x)-1]≤0,
因为e^x不等于0,所以f(x)-1≤0,即f(x)≤1.
若设F(X)=e^x[f(x)+1],则同理可得-1≤f(x),
综上所述,可得结论:|f(x)|≤1.