作业帮 > 数学 > 作业

求解一道关于棣莫佛定理的证明题

来源:学生作业帮 编辑:搜搜做题作业网作业帮 分类:数学作业 时间:2024/08/12 16:37:20
求解一道关于棣莫佛定理的证明题
求证 sin(3x) = 3cos^2(x)sin(x)-sin^3(x)
求解一道关于棣莫佛定理的证明题
先说第一个吧
方法一:
e^ix=cosx+isinx
e^3ix=cos3x+isin3x
那么e^3ix=(e^ix)^3=(cosx+isinx)^3=cos3x+isin3x
展开后 令实部等于实部 虚部等于虚部
则有
sin3x=4*sin(x)*cos(x)^2-sin(x)=3cos^2(x)sin(x)-sin^3(x)
cos3x=4*cos(x)^3-3*cos(x)
方法二 :
利用三角学知识 sin(α+β)=sinαcosβ+cosαsinβ
sin2x=2sinxcosx cos2x=2cos^2(x)-1=1-2sin^2(x)
sin^2(x)+cos^2(x)=1
那么sin(3x)=sin(x+2x)=sinxcos2x+cosxsin2x=...=3cos^2(x)sin(x)-sin^3(x)
追加那个题目因为是6倍角
无非是先求六倍角正弦 +余弦 相除即可
sin6x=sin(2*3x)=2sin3xcos3x=32*sin(x)*cos(x)^5-32*sin(x)*cos(x)^3+6*sin(x)*cos(x)
cos6x=cos(2*3x)=2cos^2(3x)-1=32*cos(x)^6-48*cos(x)^4+18*cos(x)^2-1
tan6x=sin6x/cos6x=(6*tan(x)-20*tan(x)^3+6*tan(x)^5)/(1-15*tan(x)^2+15*tan(x)^4-tan(x)^6)
不过我感觉导师应该不是让你做复杂计算 那样意义不大吧?我使用matlab一下看到结果了
(先安装matlab 任意版本即可) 输入代码如下
syms x
expand(sin(3*x))
expand(cos(3*x))
expand(tan(6*x))
结果如下:
>> syms x
>> expand(sin(3*x))
ans =
4*sin(x)*cos(x)^2-sin(x)
>> expand(cos(3*x))
ans =
4*cos(x)^3-3*cos(x)
>> expand(tan(6*x))
ans =
(6*tan(x)-20*tan(x)^3+6*tan(x)^5)/(1-15*tan(x)^2+15*tan(x)^4-tan(x)^6)
再问: 也就是说,第一种方法里面其实就是展开整个三次方算式是吗?那么类推的话如果求cos(4x)之类的是展开四次方然后找实部是吗? 三角函数的东西完全被我忘掉了多谢你的提醒! 那个……这是国外高二的数学题啊,应该……不能……用……软件……的……吧……?(又不是大学生
再答: 第一个题目 我用了两个方法 方法一 是利用复数性质 (cosx+isinx)^m=cosmx+isinmx e^ix=cosx+isinx 这个性质就是棣莫佛定理 方法二使用的就是三角函数了 根据你的题目 我个人认为你导师想让你使用我的方法一 是的 4次方按方法一要计算四次方