曲面z=y lnx z,在

来源:学生作业帮助网 编辑:作业帮 时间:2024/07/30 19:23:21
曲面z=y lnx z,在
曲面z=x+xy-1在点(1,1,1)处的法向量为 .

令f(x,y,z)=x+xy-z-1,则f'x(x,y,z)=1+y=2,f'y(x,y,z)=x=1,f'z(x,y,z)=-1,因此,在点(1,1,1)处的法向量为(2,1,-1).

曲面x^2+y^2+z^2=1与曲面y^2=2x的交线在xoz平面的投影曲线是( )

曲面x^2+y^2+z^2=1与曲面y^2=2x的交线在xoz平面的投影曲线是(圆)

曲面z=x^2+y^2 被平面z=1 z=2所截曲面面积

-(pi*(5*5^(1/2)-27))/6另附Matlab程序段:%此程序为计算空间中给定的曲面r(u,v)的面积clearall;clc;symsuv;%{设置曲面的向量形式r(u,v)=分量函数

z=xy是什么曲面

可以先在二维坐标中作xy=1的图像,也就是y=1/x.这个图像很容易的,就是在一三象限的反弧线,作好后再扩展到三维坐标系中,就是把线扩展成面,就是两个反弧面.图形就是两个关于Z轴对称的弧面,沿Z轴看就

试求曲面z=1a

由题意,曲面与柱面的交线在xoy面的投影为x2+y2=a2所设所截的曲面为∑,则∑在xoy面的投影为D={(x,y)|x2+y2≤a2}∴所求曲面的面积为A=∫∫dS=∫∫D1+zx2+zy2dxdy

曲面e^(2z)-z+xy=2在点(1,1,0)处的法向量为

(1,1,1)F(X,y,z)=e^(2z)-z+xy-2n=(F(对x求导),F(对y求导),F(对z求导))F(对x求导)=yF(对y求导)=xF(对z求导)=2e^(2z)-1代入得n=(1,1

求曲面z=x2+xy+zy2在(1,-1,2)处切平面方程.

z=x²+xy+zy²设f(x,y,z)=x²+xy+(y²-1)z在(1,-1,2)处的切平面方向导数是∂f/∂x=2x+y=2x1-

求曲面e^x-z+xy=3在点(2,1,0)处的切平面及法线方程.

∵e^x-z+xy=3==>z=e^x+xy-3==>αz/αx│(2,1,0)=e²+1,αz/αy│(2,1,0)=2∴在点(2,1,0)处切平面的法向量是(e²+1,2,-1

曲面z=arctan(y/x)在点(1,1,π/4)处切平面的法向量是:

F(x,y,z)=arctan(y/x)-z∂F/∂x=-y/(x²+y²)∂F/∂y=x/(x²+y²)

曲面z=xy在点(1,2,2)处的法向量n

令F(x,y,z)=xy-z,则Fx′=y,Fy′=x,Fz′=-1.从而,曲面在P(1,2,2)处的法向量为:n=(Fx′,Fy′,Fz′)|P=(2,1,-1),切平面方程为:2(x-1)+(y-

求原点到曲面在z^2=xy+x-y+4的最短距离

很简单!建立方程L(x,y,z,c)=(x^2+y^2+z^2)^1/2+c(z^2-xy-x+y-4)然后分别对L求偏导,最后求的xyzc,最后再代入方程L就是说球的结果!

在曲面z=xy上求一点,使该点处曲面的法线垂直于平面x+3y+z+9=0

http://zhidao.baidu.com/link?url=MDovhDXakNf_-glTeyO3GkfqOhLXNaIcV1ZF7wkYTLFHedpeQ0w89KenXbleQxqnzL-

z=xy在空间坐标中代表什么曲面,它的图形是怎么的?

z=xy是双曲抛物面,就是马鞍面.图形参考:

在空间直角坐标系下,z=2-x^2表示什么曲面?

首先,在x-z平面上将这个函数图象画出来,然后将其在y轴上无限延长就行了,相当于z的取值属于整体实数

第二型曲面积分 计算曲面积分∫∫xdxdy+ydxdz+zdxdy,∑是z=(x^2+y^2)^1/2在z=0和z=h之

补上两个面z=0与z=h,三个面上用高斯公式,得πh^3,z=0上的积分是0,z=h上的积分是πh^3,所以结果是0再问:为什么要补上z=0,根本没有用啊,这是圆锥面啊再答:那倒是,不用加再问:而且z

如何用matlab画出曲面x^2+4*y^2+9*z^2=36以及曲面在三个坐标面上的投影

画曲面---把曲面方程参数化a1=linspace(0,2*pi,30);b1=linspace(0,pi,30);[a,b]=meshgrid(a1,b1);x=6*cos(a).*sin(b);y

曲面e*z-z+xy=3在点(2、1、10)处的切平面方程

写成F(x,y,z)=0的形式,然后分别对x,y,z求导~得到法向量先求导数dF/dx=y,dF/dy=x,dF/dz=e-1;代直得到法向量(1,2,e-1)由此得到切平面:(x-2)+2(y-1)

曲面z=x+xy-1在点(1,1,1)处的法向量为

令f(x,y,z)=x+xy-z-1,则f'x(x,y,z)=1+y=2,f'y(x,y,z)=x=1,f'z(x,y,z)=-1,因此,在点(1,1,1)处的法向量为(2,1,-1).

曲面sinz-z+xy=1在点(2,-1,0)出的法线方程

令F(x,y,z)=sinz-z+xy-1则偏导数:Fx=yFy=xFz=cosz-1所以曲面sinz-z+xy=1在(2,-1,0)的法向量是:(-1,2,0)