A为实对称阵,则必有正交阵

来源:学生作业帮助网 编辑:作业帮 时间:2024/08/06 07:46:12
A为实对称阵,则必有正交阵
线性代数中对称矩阵的正交化.求正交阵P使为对角阵

求特征向量,再正交化,单位话,就得到了

设A为n阶实对称矩阵,若A的平方等于E,证明A是正交矩阵

正交矩阵定义:AA'=E(E为单位矩阵,A'表示“矩阵A的转置矩阵”.)或A′A=E,则n阶实矩阵A称为正交矩阵对称矩阵A'=A所以A方=E,命题成立

实对称矩阵对角化问题设A为3介实对称矩阵,可知存在正交阵P,使得P'-1AP=B,B为其特征值构成的对角矩阵,为什么求出

必须单位化!因为正交矩阵P是由A的特征向量构成的而矩阵P是正交矩阵的充分必要条件是它的列(行)向量组是标准正交向量组,即两两正交且长度为1.所以必须单位化.不对.单位化后得到的P才是正交矩阵.PS.用

A为正交阵A的伴随矩阵也为正交阵的证明

因为A为正交阵所以A^T=A^-1于是A^*=det(A)*A^-1=det(A)*A^T所以(A^*)^-1=[1/det(A)]*(A^T)^-1=[1/det(A)]*(A^-1)^T=[(1/

设A为实对称矩阵,B为实反对称阵,并且满足AB=BA,A-B为可逆阵,证明:(A+B)(A-B)^-1是正交阵.

再问:��һ��������[��A-B��^T]-1(A-B)^T��ô���ɣ�A+B��^-1(A-B)��再答:(A+B)^T=(A^T+B^T)��ע�⵽A�ǶԳƵ�,BΪ���Գƿɵá��

证明“若A为n阶正交阵,则其伴随矩阵A*也一定是正交矩阵.”

知识点:(A*)^T=(A^T)*因为A是正交的,所以A^TA=E(或AA^T=E)所以(A^TA)*=E*所以A*(A^T)*=E所以A*(A*)^T=E所以A*是正交矩阵.

矩阵A可分解为正交阵*上三角矩阵,也可分解为另一个正交阵*下三角矩阵,请问这两个正交阵的关系是什么

这不是明摆着的吗A=SDA^{-1}=D^{-1}S^{-1}A^T=D^TS^TA^{-T}=S^{-T}D^{-T}=SD^{-T}D^{-T}是上三角阵,所以最后一个就是A^{-T}的QR分解另

矩阵A为正交阵的意思是A中向量两两正交吗

A为正交矩阵A的列(或行)向量两两正交,且长度为1

设A为n阶矩阵,证明A为正交阵的充分必要条件是A*为正交阵

A为正交阵当且仅当A的逆为正交阵(这个结论应该都讲过,不用证了吧……要证的话也很简单),A*=|A|乘以A的逆,得证.

AB均为实对称矩阵,且AB=BA,如果A有n个互异的特征值,证明,存在正交矩阵P使P'AP与P'BP均为对角阵

假定你所说的“AB均为实对称矩阵”其实是“A和B均为实对称矩阵”先取正交阵P使得P'AP=D是对角阵令C=P‘BP,由条件知DC=CD,把每个元素都写出来,再利用D的对角元两两不同即得C是对角阵事实上

线性代数,施密特正交化,课本有说,正交矩阵化实对称矩阵A为对角矩阵步骤:

属于不同特征值的特征向量是正交的,但如果一个特征值的重数k>1,那么属于这个特征值的线性无关的特征向量有k个,这k个特征向量不一定正交,需要对它们正交化.

线性代数求一个正交的相似变化,将对称矩阵A转化为对角矩阵.

|A-λE|=2-λ-20-21-λ-20-2-λr1+(1/2)(2-λ)r2-r3(只能尝试这样,-r3是后来发现正好凑出(1-λ)公因子)0(1-λ)(2-λ)/2-2(1-λ)-21-λ-20

若A实对称矩阵,T是正交矩阵,证明T^-1AT是对称矩阵

(T^-1AT)的转置=T的转置*A的转置*T^-1的转置因为T是正交阵,所以T的转置=T-1因为A是实对称阵,所以A的转置=A则(T^-1AT)的转置=T的转置*A的转置*T^-1的转置=T^-1*

设A为实对称矩阵,且A正交相似于B,证明B为实对称矩阵.

由已知,存在正交矩阵Q使得Q^TAQ=B因为A是对称矩阵所以A^T=A所以B^T=(Q^TAQ)^T=Q^TA^T(Q^T)^T=Q^TAQ=B所以B为对称矩阵.又因为A为实矩阵,则其特征值都是实数,

对实对称矩阵进行正交相似对角化的 正交阵 是否唯一?除了施密特正交化法,还有什么正交化法?

不唯一,比如三阶正交阵中,将第一列与第三列交换后,仍可相似对角化,只不过对角矩阵中特征值顺序变了变位置.还有可能由于正交化的步骤不同,使得正交阵不同.施密特正交化总的来说还是有些麻烦的,如果是做正交阵

试求一个正交的相似变换矩阵P,将已知的3阶对称阵A化为对角阵

把λ=1代入方程组(A-λE)X=0中,得到该方程组的系数矩阵为12-212-224-4→000-2-44000所以,这时,方程组与方程x1+2x2-2x3=0(x2,x3为自由未知量)同解,因此,令

已知实对称矩阵A=(2 1 1,1 2 1,1 1 2),求正交阵和对角阵

设此矩阵A的特征值为λ则行列式|A-λE|=2-λ1112-λ1112-λ第1行减去第2行=1-λλ-1012-λ1112-λ第2列加上第1列=1-λ0013-λ1122-λ按第1行展开=(1-λ)(