如同所示,一个内壁光滑的圆锥筒,其轴线垂直水平面,圆锥筒固定不动,有一个质量为m

来源:学生作业帮助网 编辑:作业帮 时间:2024/07/25 04:34:11
如同所示,一个内壁光滑的圆锥筒,其轴线垂直水平面,圆锥筒固定不动,有一个质量为m
如图所示,一个内壁光滑的圆锥筒的轴线垂直于水平面,圆锥筒固定不动,质量为m的小球紧贴着内壁在图中所示的水平面内做匀速圆周

有圆锥的锥角度数吗?或者小球做匀速圆周运动的半径.现在看来好像是条件不够.再问:角度为α再答:G=mgN的竖直分力=mgN的水平分力提供向心力

如图所示,一个内壁光滑的圆锥形筒的轴线垂直于水平面,圆锥筒固定不动,有两个质量相等的小球A和B紧贴

   答案为B,A,B小球均做匀速圆周运动,加速度由向心力提供且大小不变,而两球向心力都由重力和斜面的支持力提供,因为两球质量相同,且位于同一圆锥,则斜面的支持力也相同,

如图所示,一个内壁光滑的圆锥形筒的轴线垂直于水平面,

因为AB在同一个圆锥同里面,所以AB的角速度相等,由V=wr所以.A的线速度必定大于B球A对B错因为做匀速圆周运动,AB对同的压力,就等于重力的分力,AB的质量相同,所以D错而周期T=2Pi/w则周期

如图所示 一个内壁光滑的绝缘细直管

公式右边的小球质量要变

一个内壁光滑的圆锥形筒的轴线垂直于水平面,圆锥筒固定,有质量均为m的小球A和B沿着筒的内壁在水平面内做匀速圆周运动,A、

第一问1:1第二问(根号2):1第三问1:(根号2)第一问由于两小球竖直方向上没有位移,所以竖直方向合力为零,支持力竖直方向分力与重力平衡,所以两个小球受的支持力都为mg/cosa,所以向心力mgta

一个内壁光滑的圆锥形筒的轴线垂直水平面,圆锥筒固定,有质量相同的小球A和B沿着筒的内壁在水平面内做匀速圆周运动,如图所示

A、B、对小球受力分析,小球受到重力和支持力,它们的合力提供向心力,如图:根据牛顿第二定律,有:F=mgtanθ=mv2r解得:v=grtanθ.由于A球的转动半径较大,A线速度较大,而ω=vr=gt

一道高一物理题不会如图所示,一个竖直放置的圆锥筒可绕其中心轴OO'转动,筒内壁粗造,筒口半径和筒高分别为R和H,筒内壁A

当筒不转动时,物块受重力,弹力还有摩擦力三力平衡,重力的两分力分别等于弹力(支持力)N和摩擦力f设筒壁与水平面成α故f=mgsinαN=mgcosαsinα=H/根号(H^2+R^2)cosα=R/根

如图所示,一光滑的圆锥内壁上,一个小球在水平面内做匀速圆周运动,如果要让小球的匀速圆周运动的轨迹离锥顶远些,则下列各物理

对A、B两位置进行受力分析,均只受重力和漏斗给的支持力FN.如图所示对A球由牛顿第二定律:FNAsinα=mg…①FNAcosα=mv2ArA=mωA2rA…②对B球由牛顿第二定律:FNBsinα=m

如图所示,一个内壁光滑的圆锥筒的轴线垂直于水平面,圆锥筒固定不动,两个质量相同的小球A和B紧贴着内壁分别在图中所示的水平

对任一小球受力分析,受重力和支持力,如图,由重力与支持力的合力提供向心力,则根据牛顿第二定律,有 F=mgtanθ=mv2r=mω2r;则得:v=grtanθ,ω=gtanθr因为A球的转动

如图所示,一个内壁光滑的圆锥的轴线垂直于水平面,圆锥固定不动,两个质量相同的小球A、B,紧贴着内壁分别在图中所示的水平面

A、对小球受力分析,小球受到重力和支持力,它们的合力提供向心力,如图根据牛顿第二定律,有:F=mgtanθ=mv2r解得:v=grtanθ.由于A球的转动半径较大,A线速度较大.故A错误.B、ω=vr

在一个内壁光滑的圆锥桶内,两个质量相等的小球A、B紧贴着桶的内壁分别在不同高度的水平面内做匀速圆周运动,如图所示.则(

tanθ=mg/F向,则向心力F向=mg/tanθ=mv^2/r,因此v^2=gr/tanθ.因此vA>vB.B对F向=mg/tanθ=mw^2*r,w^2=g/(rtanθ),因此wA再问:两球向心

一个内壁光滑的圆锥形筒的轴线垂直于水平面,圆锥筒固定

二个球在圆锥内做匀速圆周运动时所受到的合力相等F合=mgtana再有向心力公式得mgtana=mω²r半径大的角速度小,A的半径大角速度小.A.A球的角速度必小于B球的角速度.正确.mgta

如图所示一个内壁光滑绝热的气缸固定在地面上

平均动能只和温度有关是在推导压强的微观意义时得到的结论,这个例子里,气体体积增大,对外做功,同时绝热,所以做功是靠消耗内能来完成的,内能降低,分子动能减小,温度下降.气体内能是不考虑分子势能的,内能唯

如图所示,内壁光滑的圆锥筒的轴线垂直于水平面,圆锥筒固定不动,两个质量相同的小球A和B紧贴着内壁分别在图中所示的水平面内

A、对小球受力分析,小球受到重力和支持力,它们的合力提供向心力,如图根据牛顿第二定律,有:F=mgtanθ=mv2r=mrω2,解得:v=grtanθ,ω=gtanθr,A的半径大,则A的线速度大,角

一个内壁光滑的圆锥筒的轴线是竖直的,圆锥固定,有质量相同的两个小球A和B贴着筒的内壁在水平面内做匀速圆周运动,如图所示,

A、以小球为研究对象,对小球受力分析,小球受力如图所示:由牛顿第二定律得:mgtanθ=mv2r=mrω2=ma,解得:v=grtanθ,ω=gtanθr,a=gtanθ,因为A的半径大,则A球的线速

如下图所示,在固定的圆锥形漏斗的光滑内壁上,有两个质量相等的小物块A和B(可视为质点),它们分别紧贴漏斗的内壁,在不同的

“物块A对漏斗内壁的压力大于物块B对漏斗内壁的压力”不正确.小物块A和B的质量相等、重力mg相等,漏斗内壁对A、B的支持力F的竖直分力与mg平衡抵消(因为小球在水平面上做匀速圆周运动,竖直方向没有加速

如图所示,一个内壁光滑的圆锥筒的轴线垂直于水平面,圆锥筒固定不动,有两个质量相同的小球A和小球B紧贴圆锥筒内壁分别在水平

D、两球所受的重力大小相等,支持力方向相同,根据力的合成,知两支持力大小、合力大小相等,故D错误.A、根据得F合=mv2r,合力、质量相等,r越大线速度大,所以球A的线速度大于球B的线速度,故A错误;

如图所示 一个竖直放置的圆锥筒可绕其中心轴OO'转动,筒内壁粗糙,筒口半径和筒高分别为R和H,筒内壁A点的高度为筒高的一

1、设筒内两壁的夹角为2θ,对物块进行受力分析,受重力G,支持力N,摩擦力f因为三力平衡,可构成一个直角矢量三角形,解三角形可得N=mgcosθ,f=mgsinθ而cosθ=H/根号(R^2+H^2)

如图所示,一个竖直放置的圆锥筒可绕其中心轴OO′转动,同内壁粗糙,筒口半径和筒高分别为R和H,筒内壁A点的高度为筒高的一

(1)设圆锥母线与水平方向的夹角为θ.当筒不转动时,物块静止在筒壁A点时受到的重力、摩擦力和支持力三力作用而平衡,  由平衡条件得    摩