利用比较法判定级数的敛散性∑1 2^n

来源:学生作业帮助网 编辑:作业帮 时间:2024/06/30 23:46:52
利用比较法判定级数的敛散性∑1 2^n
用比较法级数(∞∑n=1)1/n^n敛散性

该级数是收敛的. 经济数学团队帮你解答.请及时评价.谢谢!再问:那n为2时候呢再问:n为2就是个数了,我的错再答:比较判别法只要从某一项开始满足不等式就可以,前面增减有限项不影响收敛性。再问

利用等比级数与调和级数的敛散性及无穷级数的性质,判定下列级数是否收敛

均不收敛,即均发散(1)调和级数∑1/n(n=1、2、3.)是不收敛的,故从中将前9项去掉得到的1/10+1/11+1/12+1/13+……也是不收敛的;(2)由题意可知通项为∑(n/2n-1)(n=

判定级数ntan (π\2∧n+1)的敛散性

答:limn->∞u(n+1)/u(n)=limn->∞[(n+1)tan(π/2^(n+2))]/[ntan(π/2^(n+1))]又当t->0时,tant~t=limn->∞[(n+1)(π/2^

级数 n^(1/n)-1 的敛散性,用比较法或比较法的极限形式

n^(1/n)--1=e^(lnn/n)--1=1+lnn/n+小o(1/n)--1等价于lnn/n>1/n,因此原级数发散.

利用比较审敛法判定级数[∞ ∑ n=1] 1 / [(2n+1)]的敛散性

[∞∑n=1]1/[(2n+1)]>[∞∑n=1]1/[(2n+2)]=(1/2)[∞∑n=1]1/[(n+)]=(1/2)[∞∑n=2](1/n)后者为调和级数(是p=1时得p级数),发散,故原级数

利用比值审敛法判定级数[∞ ∑ n=1] 1 / [(2n+1)!]的敛散性

后项与前项的比值=1/[(2n+2)(2n+3)]趋于0

利用级数的性质判定下列级数的敛散性(以图片中的题目为准):

级数收敛的必要条件(级数性质5)是其一般项趋于0,而此级数的一般项趋于1/2,所以此级数发散.

用根值审敛法判定级数的敛散性:∑(n/2n+1)^n

lim[:(n/2n+1)^n]^(1/n)=lim(n/(2n+1))=1/2

利用比较审敛法判定级数[∞ ∑ n=1] sin[π /(2^n)]的敛散性

因为当n趋于无穷时,π/2^n趋于0所以根据等价无穷小的代换:sint〜t(t—>0),有sin[π/(2^n)]〜π/(2^n)(n—>无穷)所以[∞∑n=1]sin[π

利用等比级数与调和级数的敛散性及无穷级数的性质,判定下列级数是否收敛;

所有的都发散级数收敛有一个必要条件,也就是说如果级数收敛,他的一般项趋于0.但是,一般项趋于0.级数不一定收敛.

利用比值审敛法判定级数[∞ ∑ n=1] (n!)^2 / [(2n)!]的敛散性

an=(n!)^2/[(2n)!]an+1/an=[(n+1)!]^2/[(2n+2)!]/(n!)^2/[(2n)!]=[(n+1)!/n!]^2*[(2n)!/(2n+2)!]=(n+1)^2/(

用比较法判断级数的收敛性(∞∑n=1)1/ln(n+1)

跟1/n的求和去比较吧.1/3+1/4+...1/n...发散,所以1/ln3+1/ln4...+1/ln(n).发散,因为后者每项都大于前者

用比较法或极限形式判定级数n分之一的n次方的收敛性

当n≥10时,1/n^n≤1/10^n,而级数∑1/10^n收敛,所以级数∑1/n^n收敛再问:为什么令n≥10?再答:这个没什么特别原因,令n≥2或3都可以,只要保证后一个级数收敛就行。

判定级数∑(n-1,正无穷)1/(√3n2+2n)的敛散性

级数发散.lim(n→∞)1/√(3n^2+2n)/1/n=lim(n→∞)n/√(3n^2+2n)=lim(n→∞)1/√(3+2/n)=1/√3.∑1/n发散,所以级数∑1/√(3n^2+2n)发

判断级数敛散性:(1/n) × sin(1/n),题目要求用比较法或比较法的极限形式.

0sin(1/n)∑(1/n)×sin(1/n)1收敛)根据比较判别法,正项级数,大的收敛,小的收敛,所以原级数收敛

判定级数∑(1,+∞)n/2^n的敛散性

比值判别法lim[u(n+1)/u(n)]=lim[(n+1)/2^(n+1)/(n/2^n)]=1/2<1所以,级数收敛.

判定级数的敛散性

1/ln(n+1)>1/(n+1),级数1/(n+1)发散,所以级数1/ln(n+1)发散.

利用级数的性质判定下列级数的敛散性(以图片中的题目为准)

(∑1/2^n)和(∑1/3^n)两个均是收敛,差也是收敛的也可用一般方法an=1/2^n-1/3^nlima(n+1)/a(n)=lim[1/2-(1/3)(2/3)^n][1-(2/3)^n]=1