令Z=ln(1 x^2 y^2)则dz

来源:学生作业帮助网 编辑:作业帮 时间:2024/07/03 00:19:04
令Z=ln(1 x^2 y^2)则dz
设X~N(0,1),Χ^2(5),XY相互独立,令Z=X/Y/5则Z=

第一个无过程,就是考察t分布的定义,这里结果是t(5);第二个也可以说是无过程,考察的是二项分布的数字特征及矩估计方法(替换原理)这两个常识.对于X服从B(n,p)来说,其期望为EX=np,方差为DX

函数z=1/√(x+y)-ln(x-y+2)的定义域

由题意:x+y>0x-y+2>0所以这定义域是由两条直线所划成的平面4个区域中的一个.

用matlab画z=(x-y)^0.5+(x+y)^0.5 和z=ln(y-x)+x^0.5/(1-x^2-y^2)^0

你这个是要画曲面图,画曲面图通常用surf和mesh函数,而这两个%函数都需要知道对应x,y向量交叉点内所有点处的z值,所以得用如%x=-200:0.3:200;y=-200:0.1:200;%[X,

设整数n≥4,集合X={1,2,3,…,n}.令集合S={(x,y,z)|x,y,z∈X,且三条件x<y<z,y<z<x

由题意可知:条件x<y<z,y<z<x,z<x<y恰有一个成立,即x,y,z中任何两个不相等.若(x,y,z)和(z,w,x)都在S中,则有x,y,z中任何两个不相等,z,w,x中任何两个不相等,故y

设z=z(x,y)由方程x/z=ln(y/2)所确定的隐函数 求∂z/∂y,∂z/&

z=x/ln(y/2)z′(x)=1/ln(y/2)z′(y)=-x/ln(y/2)^2*(1/(y/2))*1/2=-2x/(y*ln(y/2)^2)

求导 z=ln(2x-y) z=cos[(x-y)/(x^2+y^2)] 一道也给,

题目不清楚,有两个变量,是求偏导还是全微分表达式?求偏导的话,将其中一个变量看做常数,按一元函数的方法求

z=ln(xy+x/y),则δ^2z/δxδy=什么

δz/δx=1/(xy+x/y)*(y+1/y)=(y²+1)/(xy²+x)=1/xδ^2z/δxδy=δ(δz/δx)/δy=0

x+y^2+z=ln (x+y^2+z)^1/2急、

令x+y^2+z=t那么x+y^2+z=ln(x+y^2+z)^1/2可以转化为2t=lnt根据图象,s1=2t以及s2=lnt这两条曲线是不会相交的!所以2t=lnt没有实根所以x+y^2+z=t没

Z=√(4x-y^2)+ln(x+y-1)定义域

z可以分为两部分f(x)=√(4x-y^2)和g(x)=ln(x+y-1)z=f(x)+g(x)分布求定义域再求交集4x-y^2≥0x+y-1>0y^2≤4x且x>1-y

设z=ln(x^2+y),求

∂z/∂x=(1/(x²+y))(2x)=2x/(x²+y)∂²f/∂x∂y=∂[∂z

高数题 设函数z=ln(1+x^2+y^2),则dz=多少?

∂z/∂x=2x/(1+x^2+y^2)∂z/∂y=2y/(1+x^2+y^2)dz=∂z/∂xdx+∂z/W

z=ln(x+a^-y^2) 对y求导,

z=ln[x+a^(-y^2)],以下'表示对y求偏导,z'=[a^(-y^2)]'/[x+a^(-y^2)]=(-y^2)'a^(-y^2)lna/[x+a^(-y^2)],z'=-2ya^(-y^

证明:若z=x^y(x>0且x≠1),则(x/y)(αz/αx)+(1/ln x)(αz/αy)=2z

α是∂吧z=x^y∂z/∂x=yx^(y-1)∂z/∂y=x^y*lnx(x/y)∂z/∂x+(1/lnx)(

设随机变量X与Y互相独立,且X~N(0,9),N(0,1),令Z=X-2Y则D(Z)=

因为X,Y独立所以D(Z)=D(X-2Y)=D(X)+4D(Y)=9+4=13

设x+y^2+z=ln根号(x+y^2+z),求аz/аx (x+y^2+z)在根号下,

两边取e的指数:e^(x+y²+z)=(x+y²+z)/2对x求导:[e^(x+y²+z)]*(1+ðz/ðx)=(1+ðz/ðx

设x+y^2+z=ln(x+y^2+z)^1/2,求dz/dx

应该是∂z/∂x吧!令u=x+y^2+z=>du/dx=1+dz/dxu=lnu^(1/2)=1/2*lnudu/dx=1/2*1/u*du/dx=>du/dx=u/(1/2+

z=ln(y-x^2)+.根号下1-y-x的定义域

y-x^2>01-y-x>=0所以x^2

函数z=ln(x+y/2x),则偏导数az/ay=

az/ay=1/(x+y/2x)*1/2x=1/(2x²+y)

已知x=ln π,y=log(5)2,z=e^-1/2,则 A.x<y<z    

小公鸡点到了A再问:����D再答:��ֻ��˵��С��������再问:��再答:�r(�s���t)�q