二维随机变量(X,Y)在区域G上服从均匀分布

来源:学生作业帮助网 编辑:作业帮 时间:2024/08/19 09:32:08
二维随机变量(X,Y)在区域G上服从均匀分布
设二维随机变量(X,Y)在区域G={(x,y)|0≦x≦1,x²≦y≦x}上服从均匀分布,求

由于∫(x^2,x)∫(0,1)f(x,y)dxdy=1,且f(x,y)是常数,算出f(x,y)=6,边缘密度f(x)=∫(x^2,x)6dy=6x^2-6x;边缘密度f(y)=∫(y^0.5,y)6

设平面区域D由y = x ,y = 0 和 x = 4 所围成,二维随机变量(x,y)在区域D上服从均匀分布,则(x,y

二维随机是服从均匀分布的,所以根据公式知道:f(x,y)=1/8(D区域面积的倒数)所以X的边缘分布为:∫(0,x)1/8dy=x/80

设平面区域D由y=x,y=0和x=2所围成,二维随机变量(x,y)在区域D上服从均匀分布,则(x,y)关于x的边缘概率密

均匀分布因此设f(x,y)=k.二重积分上下限分别(0,y)dx和(0,2)dy得2k=1,k=0.5因此f(x,y)=0.5,f(x)=积分0.5,上下限分别(0,x)dy=0.5x因此F(X)=0

设二维随机变量(X,Y)服从区域G={(x,y):1

我假设x和y是独立的啦是不是漏写了Fx(x)=x-1.Fy(y)=(y-1)/2P(zt)=1-P(min(x,y)>t)=1-P(x>tandy>t)=1-P(x>t)P(y>t),(根据独立性)=

设二维随机变量(X,Y)在区域D上服从均匀分布,其中D:0

因为二维随机变量(X,Y)在区域D上服从均匀分布,所以当(x,y)∈D时,概率密度f(x,y)为区域D的面积的倒数,当(x,y)不在D内时,f(x,y)为0因为D:0

设二维随机变量(X,Y)在区域G={(x,y)|0

cxysxsgwhm77766041542011-09-2422:59:06vxjfjghunc\x0df(x,y)=2E(X)=∫[-1,0]dx∫[-1-x,0]2xdy=∫[-1,0]2x(1+

设二维随机变量xy在由x轴,y轴及直线2x+y=2所围成的三角形区域d上服从均匀分布,求

两个截距分别带入x=0得到y轴截距2y=0x1所以定义域三角形面积为1f(x,y)=1在上述给定区域fX(x)=∫(0~2-2x)1dy=2-2x0

密度函数题设二维随机变量(X,Y)在区域D={(x,y)|0

随机变量(X,Y)在区域D服从均匀分布,则联合密度函数P(X,Y)=1/Ω,Ω=1/2即区域D的面积,为直线x=0,y=x,y=1所围的部分,所以P(X,Y)=2

二维连续型随机变量(X,Y)在区域D上服从均匀分布,求在X=0条件下,关于Y的条件概率密度.

学姐,你又粗现了.条件概率公式:f(x,y)/f(x)=f(y|x),令x=0,有这个公式算一下,答案立刻就出来了

随机变量(X,Y)在区域:0

您的采纳是我前进的动力~

设二维随机变量(X,Y)在区域G上服从均匀分布,其中G是由曲线y=x^2和y=x所围成的,求联合概率密度

本题主要考察均匀分布和定积分的知识.先画图,标出区域G,积分求出区域G的面积.所以当0

二维随机变量(X,Y)在区域0≤x≤1,y^2≤x内服从均匀分布 求

区域面积S=∫∫dxdy=4/3f(x,y)=1/s=3/4,0≤x≤1,y^2≤x,其他为0(2)f(x)=∫[-∞,∞]f(x,y)dy=3√x/2,0≤x≤1,其他为0f(y)=∫[-∞,∞]f

若已知二维随机变量(X,Y)在区域服从均匀分布

回答:区域D为一正方形,面积为2.故f(x,y)=1/2,x,y位于D内.于是,fX(x)=∫{-∞,∞}f(x,y)dy=1+x,x≤0;1-x,x>0.fY(y)=∫{-∞,∞}f(x,y)dx=

二维随机变量(X,Y)在区域D:0

又见面了哈...现在你应该会做了吧...= =见下图吧

大二概率题设二维连续型随机变量(X,Y)在区域D:0

1)E(X)=E[E(X|Y)],就是先对某Y值上的X积分再对全局积分2)你求出面积,其倒数就是了.3)E(Z)=E(2X+Y)=2E(X)+E(Y)之后如1计算X和Y期望,D(Z)=E(Z^2)-E

二维随机变量(x,y)服从平面区域D={0

答: f(z) = 1-(z/2), 0<z<2; =0, 其它.证明一(阶跃函数法): 先回忆一下阶跃函数的定义:&